Aluminum exclusion and aluminum tolerance in woody plants

نویسندگان

  • Ivano Brunner
  • Christoph Sperisen
چکیده

The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al(3) (+) from root cells (exclusion mechanisms) and those that enable plants to tolerate Al(3) (+) once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al(3) (+) exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al(3) (+) adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and molecular mechanisms of aluminum tolerance in plants.

Aluminum (Al) toxicity restricts root growth and agricultural yield in acid soils, which constitute approximately 40% of the potentially arable lands worldwide. The two main mechanisms of Al tolerance in plants are internal detoxification of Al and its exclusion from root cells. Genes encoding membrane transporters and accessory transcription factors, as well as cis-elements that enhance g...

متن کامل

Effects of aluminum toxicity on maize (Zea mays L.) seedlings. Parviz Malekzadeh1*, Reza Sheikhakbari Mehr1 and Ali Asghar Hatamnia2

Aluminum toxicity is one of the most deleterious factors for plant growth in acidic soils because over 50% of the world’s potentially arable lands are acidic. In recent years, considerable research has been conducted to understand the mechanisms of Al toxicity and tolerance in plants. This paper reviews the effects of different concentration of Al on plant shoot, root physiological parameters s...

متن کامل

Overexpression of BdMATE Gene Improves Aluminum Tolerance in Setaria viridis

Acidic soils are distributed worldwide, predominantly in tropical and subtropical areas, reaching around 50% of the arable soil. This type of soil strongly reduces crop production, mainly because of the presence of aluminum, which has its solubility increased at low pH levels. A well-known physiological mechanism used by plants to cope with Al stress involves activation of membrane transporters...

متن کامل

Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species.

Responses of Melaleuca leucadendra (L.) L., Melaleuca cajuputi Powell, Acacia auriculiformis A. Cunn. ex Benth. and Eucalyptus camaldulensis Dehnh. to aluminum (Al) toxicity at low pH are poorly understood. We investigated effects of low pH and exudation of ligands by roots on Al tolerance of these species. Seedlings were grown hydroponically in nutrient solutions at pH 4.2 or 3.5 containing Al...

متن کامل

The effect of Aluminum on the increasing risk of developing anemia among workers of tile production plants

Background and aims: The aluminum-containing compounds are used as glaze in tile and ceramic production plants. It means that the workers working in these plants are in direct exposure to aluminum-containing compounds. The aim of this study was to assess the potential damages caused by aluminum among tile plant workers. Methods: In this cross-sectional study, 60 workers whom were in direct exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013